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The system of non-linear equations of one-dimensional convective diffusion of a passive impurity in the case of a flow of fluid 
described by the model Burgers equation is solved using Cole-Hopf and Darboux transformations. For equal kinetic coefficients 
of the fluid its solution is reduced to solving linear heat-conduction equations. For integer Prandtl numbers, differing from unity, 
this reduction is successful for flows of uniformly moving shock waves, smoothed by the viscosity effect. Its possibility is closely 
related to the factorizabifity of second-order differential operators in this case, their decomposability into the product of first- 
order operators, and the additional internal symmetry (supersymmetry) of the problem. The interaction of shock waves and the 
impurity solitons they transfer has an absolutely inelastic character. A local increase in the impurity concentration is a result of 
the merging of impurity solitons. It is pointed out that, for certain equations of state, the reduction of the solutions of the non- 
linear convective diffusion equations to the solution of linear heat-conduction equations is also possible for an active impurity 
(when the kinetic coefficients of the fluid are equal). © 2000 Elsevier Science Ltd. All rights reserved. 

1. T H E  C O N V E C T I O N  O F  A P A S S I V E  I M P U R I T Y  
F O R  U N I T  P R A N D T L  N U M B E R  

In Kovalevskaya's papers, devoted to solving the problem of the motion of a solid in a gravity force 
field, fixed at a single point [1, 2], a relation between the integrability of non-linear ordinary differential 
equations and the ~tnalytical properties of their solutions was used for the first time. This relation was 
then employed by Painlev6 and co-workers to classify and exhaustively analyse the solutions of second- 
order non-linear ordinary differential equations [3, 4]. In the Kovalevskaya-Painlev6 method the 
integrability of ordinary differential equations is linked to the possibility of representing the solution 
in the form of Laurent series with a finite principal polar part 

(t-to) -~ ~ am(t-to) m 
m--O  

with a sufficient number of arbitrary parameters of the expansion (the latter is determined by the order 
of the equation). 

The Kovalevskaya-Painlev6 method was extended directly to analyse non-linear partial differential 
equations in [5]. "lb do this one must replace the difference t - to in the case, for example, of two 
independent variables, by a function e(x, t) and use a Laurent-type expansion about the singular manifold 
E(x, t) = 0, Die ¢: 0, ~xe ~ 0, taking into account the coefficients of the expansion of the functionsx and 
t also 

u(x,t)=Eu.e u.=u.(x,t), e=e(x,t), u.l.<o=O 
gl 

If after substituting this expansion of the solution into the equation, the exponent c~ turns out to be an 
integer (a pole singularity) and the recurrence relation for the coefficients contains a sufficient number 
of arbitrary functic,ns un(x, t) and E(x, t), corresponding to the order of the equation, one can speak of 
the Kovalevskaya-Painlev6 test in the Weiss--Tabor--Carnevale form for the equation in question as being 
satisfied. This turns out to be a sufficient indicator of its integrability [5]. 

In the case of the model equation of one-dimensional hydrodynamics, not containing the pressure, 
which is usually ca~.lled the Burgers equation [6, 7] 

b,u+u3xu-vb]u=O, u=u(x,t) (1,1) 
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the Kovalevskaya-Painlev6 test is satisfied [5] and the solution of the equation can be represented by 
the following Laurent series 

u = - 2 v e X  + ~ u.+tE ", u . = u . ( x , t ) ,  e=~(x, t )  (1.2) 
I~ n=O 

In this case two functions can be chosen arbitrarily from those indicated e(x, t) and U2(X , t) (this 
arbitrariness corresponds to the arbitrariness of the general solution of a second-order equation), while 
the coefficient function ua(x, t) satisfies the initial Burgers equation. If the regular part of the expansion 
is neglected, in the final analysis a form of the well-known Cole-Hopf replacement [8, 9] is established, 
by means of which the solution of a non-linear equation can be reduced to the solution of the linear 
heat-conduction equation. 

The description of non-dimensional convection of a passive impurity requires the simultaneous analysis 
of the non-linear equation of motion (1.1) with equations of the form 

a,c  + a~ (uc) - xO]c = o 

alk + uaxk - Xax2k = 0 

(1.3) 

(1.4) 

where Eq. (1.3) is obtained from the last equation by simple differentiation, c = a~k. The system of 
equations (1.1), (1.4) also permits of the Kovalevskaya-Painlev6 test with Laurent expansion (1.2) for 
the velocity and a similar expansion for the concentration only in the special case of unit Prandtl number 
a =- v/z = 1 [10]. In this case a form of the generalized Cole-Hopf transformation is established, namely 

u = -2vax  lne, k = 9 l e  

by means of which a system of linked non-linear equations in the case of different kinetic coefficients 
can be reduced to separate linear heat-conduction equations 

a,e = va~e, aAo = va2~ (1.5) 

Their simplest solutions correspond to the physically interesting solutions of the initial non-linear equations. 
For example, the exponential in the sum with the unit solution for e 

e = ! + exp(-0), 0 = U°(x-  x o - uot) (1.6) 
v 

corresponds to a single uniformly moving shock wave in the form of a sudden drop in the velocity with a smooth 
transition region of width ~V/Uo 

u = I +exp0 

The interaction between several shock waves is described by the sum of the exponential functions for e [11, 12] 

e = l +  Z exp[-(Oi-O0i)l, oi=Ui(x-Uit) 
i 2vk 2 ) 

In particular, the similar sum with two exponential functions (u2 > Ul > 0) 

¢=l+exp(-et)+exp(-02 +00), u= 
u I exp(-el ) + u2 exp(-02 + O 0) 

I + exp(-0j ) + exp(-e 2 +e 0) 

describes the merging of a pair of shock waves, of which the one possessing the greater velocity (u2 + ut)/2 overtakes 
the other, having a velocity Ul/2, at the instant of time 2xo/(u2 - ut), and again the wave formed as a result of the 
interaction moves further with a velocity u2/2. 

Convection of the initially localized passive impurity in the field of the uniformly moving shock 
wave, described by Eq. (1.3), is non-stationary, but the impurity distribution asymptotically acquires a 
simplified form which propagates steadily together with the shock wave of the soliton-like distribution 
[10] 
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c( x, t ) ~ seth 2 -~9-- ( x - Uot ) 
2V 

These distributions correspond completely in form with the solitons of the Korteweg--de Vries equation. 
However, unlike these well-known solitons, the "passive impurity solitons" discussed interact with one 
another absolutely inelastically in accordance with the inelastic character of the interaction of the shock 
waves transporting them. Finally, concentration of the impurity into a single overall soliton occurs. 

2. ANALYSIS OF THE ALGEBRAIC STRUCTURE AND THE 
SOLUTIONS OF THE PASSIVE IMPURITY CONVECTION EQUATIONS 

In the case of arbitrary Prandtl numbers the system of non-linear equations discussed can be reduced, 
using a similar generalized Cole-Hopf transformation of the form 

! (2.1) u=-2vOXee ' c=  , k=t; a 

v=b , (2.2) 

to three second-order linear differential equations 

(O,-vOax)e, B+V=0, B_~=0 (2.3) 

v o+1 
B ± - O , -  O 2+ 2 ux (2.4) 

However, the last two of these are linked to the first (the case o = 1, when the equation for tp reduces 
to a separate diffusion equation is again anomalous here). 

The Darboux operator appears in this generalized transformation. Its distinguishing feature is that 
it transforms the solution of a second-order linear differential equation into the solution of another 
equation of the same form (with a difference in the operators only in the coefficient functions). This 
role is clear from (71.2)-(2.4) and the directly verified commutation operator relation (the "interweaving 
relation") 

/~÷D = DB_ (2.5) 

Here it is more convenient to use dimensionless variables. In dimensionless variables 

=U°x ,  '~= ug t, v = U  (2.6) 
2v 4vt~ u 0 

formed using the characteristic velocity u0 and the viscosity coefficient, the system of the initial non- 
linear equations czn be rewritten as follows: 

Cr-'O4., +2v~nv = 0 ~ ,  ~,c+2~On(vc)=O2c, ~.ck+2ot,Onk=O2k (2.7) 

where, in view of the linearity of the pair of equations for the passive impurity concentration its scale 
can be chosen arbitrarily. The generalized Cole-Hopf transformation (2.1), (2.2) and the transformed 
equations (2.3) and (2.4) in dimensionless form will appear as 

v = - 0  nine, c = ~  k=--~--,  ~ (o)=u0/~ , . (e )  "~V o"r" ) Ea ) 

_(e) Lov(°)=o, =o 

4 r e / } ,  u~ - .7- + 

6o +ou =2vb 
Uo 

(2.8) 
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Commutation relation (2.5) is rewritten in this case as the "ladder" relation 
^ ^ A ^ 

LaD o = OaLo_ , (2.9) 

The dimensionless Darboux operator ha, as can be seen from here, will be a ladder operator, 
commutation with which enables the value of the parameter a to be changed by unity in the unique 
combination o ( a + l )  which explicitly occurs in the operator Lc,. If it is a "lowering operator", then in 
view of the formal symmetry property L_~ = L~_ 1 (by virtue of thermodynamic limitations, negative 
Prandtl numbers are impossible), the Darboux operator Da will, by (2.9), be a "raising operator". 
However, the explicit combination a(cr+ 1) does not, in general, exhaust the dependence of the operator 
discussed on the Prandtl number. Generally speaking, the dimensionless velocity ag, which also occurs 
in it, implicitly depends on the Prandtl number, as is clear from the first equation of (2.7). In view of 
this, the chain of relations with different Prandtl numbers, following from (2.9), turns out to be open. 
Its closure occurs in the special case of a steady velocity field since, when 0 ~  = 0 the distribution of 
the dimensionless velocity ceases to depend on the Prandtl number (see (2.7)). Finally then, on the 
basis of (2.9), we obtain the following linked sequence of operator relations 

L,~/)o/)a_, ... ha_,÷, = bo/)a_,.../)a_,+, La_ . (2.10) 

and by repeated use of the lowering or raising operators we can achieve any integer change in the Prandtl 
number in the equations. 

In particular, for integer Prandtl numbers the last sections in the reduction change will be operators 
with a = 1 and a = O, so that the problem is reduced to a simple problem for the heat-conduction 
equation, and the following representation of the solution is possible 

Lov'°'=0, v'°'=bo. .b,v '°', &#"=0, v(°'--"°q, ''' (2.11) 
" 2V 

The ladder form of the connection between the solutions with different Prandtl numbers obtained 
here turns out in fact to be a reflection of the fact that the Darboux operator when ~ = 0 is a root 
factorization operator of the steady part of the operator Lo (reduction of second-order operators to 
the product of first-order operators), and commutes with the operator 

(a,  + b o b ;  & ( a ,  + o;'+bo - o  = ^ 

The superscript "plus" denotes a conjugate Darboux differential operator, and for transformations a 
corollary of the equation of motion u" = t)n+C when vt = 0 is used for transformations (for a solution 
of the form (2.13) the constant C becomes unity). Hence, factorization of the operators leads to property 
(2.9) [13, 14]. In turn, the possibility of factorization is connected with the additional internal symmetry 
of the problem [15,16]. 

On changing from a fixed to a uniformly moving system of coordinates, the non-linear hydrodynamic 
equations (1.1), (1.3) and (1.4) remain unchanged in accordance with the invariability of the impurity 
concentration fields and the change in the velocity field to an additive constant (Galilean invariance) 

t' = t, x' = x -  u0t (2.12) 

u' (x ' ,  t ' )  = u ( x , t ) -  u o, c ' ( x ' , t ' )  = c(x,  t), k ' ( x ' , t ' )  = k(x ,  t) 

Because of this the solution in the form of a steady far-off bounded flow reduces to a uniformly moving 
shock wave. In a system of coordinates moving together with this wave, the velocity distribution in 
dimensionless variables (we omit the primes) has the form (compare with the form in dimensional 
variables in a laboratory system of coordinates (1.6), (1.7)) 

u = - t h ~ ,  g = r l -  2Ox = ~9--(X-Uo t) (2.13) 
ZV 

The new unknown quantities e, ~t, ~0, introduced by the generalized Cole-Hopf transformation, are 
not Galilean invariant. In accordance with the invariability of the concentration and the velocity field 
transformation (2.12) they vary as follows on changing to a moving system of coordinates 
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~.'(x',t') = ~.(x,t)exp( ~v Xlf(t) 

W'(x',t')= W(x,t)expl~vOXlfO(t) (2.14) 

~0'(x',t') = q)(x,t)exp(~vOX)f~(t) 

The form of the diffusion equation for the function e(x, t) in (2.3) will not change when such a change 
of variables is made if we choose the arbitrary function of time f(t) in the form 

f(t)  = Cexp - t (2.15) 

Here the arbitrariness of the constant C remains. In this case Eqs (2.3) for the two other functions 
¥(x, t), q~(x, t) remain invariant automatically. 

A reflection of these transformation properties of the auxiliary functions is, in particular, the fact 
that the following time-dependent function will correspond to the steady velocity distribution (2.13) 

E(~,x) = ch ~ exp(o'~) 

Here, using the amplitude arbitrariness of (2.15) we make a simplifying choice of the arbitrary constant 
C =  1/2. 

The linear equations considered and the connections between their solutions for integer Prandtl 
numbers can now be rewritten in a system of coordinates moving together with the shock wave as follows: 

LoW (°) = 0 : (i9~ - o ~  - o(o + l)sech 2 ~)W(o) = 0 

¥(o) = / ~ o ¥ ( ~ - I )  : ~(o) = (~g _ 0 th ~)W (0-I) = ch ° ~ 

( z ,~a ,,,(0) ( z ,~a+l 
~<°) : ch:+' ~L~sh~)~ "chP~ = ch°+l ~to~sh~ j u  ~,, 

lit(a -I ) 
o 

ch 

¥(o) = b o X ;  = ;9~, Z 

If we confine ourselves to analysing the fundamental solution of the initial problem for the convective 
diffusion equation (1.3) in the velocity field of the shock wave, i.e. the initial problem with localized 
initial impurity distribution 

cl,=o = 8(x- x o) = ~vS(~- ~o) 

the heat conduction equation for ~(0) and for ×, corresponding to the initial conditions, will be (the 
common dimensional factor u0/(2v) is henceforth omitted for simplicity) 

(shF~-shF~o)a H(F _ E~o) 
V<°'I,=o = a~zl,=o , xl,=o = o, 

They are proportional to the Heaviside function. The solution of these initial problems for the heat- 
conduction equation enables us to describe the evolution of the concentration field by the following 
integral representation 

_exp(_a2X)ch~( ~ ~o+= _ )2 
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where the integrals are expressed in terms of the error function, since they can easily be reduced to 
integrals of the quadratic expressions under the exponential sign. 
In particular when cr = 1 we have 

2 
c(~, x) = sech ~ [erf(k + ~/x) - erf(k - ~r~)] + exp( -~2 - x)ch ~0 

4 2-"-'~c"~" , k--- 

In another special case when a = 2 we obtain 

c(~'x)=3scch4~[~8 eff(24rx±~')+2exp(-3x)sh~sh~°~"+ erf(.Vfx+~.)]+ 

+ exp( -x2 - 3x) ch2 ~o 

2~/-~ ch 2 g 

The impurity distribution, asymptotically for long times x--->~, and fixed coordinates ~, ~ ,  here takes 
the form of a localized soliton-like wave, reflecting the steady solution of the convection equation 
c(~, 'c)- sech2°~. 

Despite the generality (the correspondence when o = 1) of the form with solitons of the Korteweg- 
de Vries equation, the similar impurity solitons differ sharply from the classical ones in the nature of 
their interactions. When collisions occur there is an absolutely inelastic merging of these asymptotically 
simplified impurity solitons, in accordance with the inelastic interaction of the shock waves transpor- 
ting them. As the number of encounters increases we would expect an accumulation of impurity in the 
solitons. Its concentration will be more pronounced the higher the Prandtl numbers. This may be one 
of the mechanisms by which coherent structures are formed from shock wave-impurity soliton pairs in 
turbulent flows of a compressible fluid. 

The formation of web-like impurity structures in the field of random two-dimensional compressible 
flows [17] apparently corresponds to the one-dimensional version considered. The stochastic increase 
in the mean width of an impurity cluster on the surface of a turbulent flow of fluid was analysed in [18] 
in the one-dimensional approximation. 

3. C O N V E C T I O N  OF AN A C T I V E  I M P U R I T Y  

We will now consider the example of an active impurity, which has an inverse effect on the fluid flow, 
for which it is also possible to reduce the solution of the non-linear equations of motion and convection 
to the solution of linear heat-conduction equations. 

If, due to the effect of the impurity transferred by the flow, the pressure in the liquid varies quadra- 
tically with the change in impurity concentration 

Otu+uOr u - v o 2 u = - o x p ,  P = pO +~c2 
• 2 

we obtain the following system of linking equations for the velocity and concentration 

O,u+u~u-vO2xu=-~cOxc, O,c +Ox(uc)-xO2~c = o (3.1) 

By a simple replacement of the unknowns, consisting of the use of the sum and difference variables 
s -- u + c~/y, r - u - c~/y, in the case of equal kinetic coefficients (v = Z), we can transfer to a pair of 
Burgers equations 

b,s + sO~s - vO2 s = O, O,r + rOxr- vO2xr = O 

each of which in turn, by a Cole-Hopf replacement, can be reduced to a linear heat-conduction equation. 

We will discuss how this reducibility of the solution of system of equations (3.1) in the case of equal kinetic 
coefficients to solutions of linear heat-conduction equations is revealed by the Kovalevskaya-Painlev6 test. When 
searching for polar expansions of the solutions [5] 
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u(x,t)= ~. un(x,t~, n-a, c(x, t)= ~. cn(x,t~, n-f1, ~.= ¢(x,t) 
n=O n:O 

for the balance of  the  most singular terms of  the equations it is required that ct = 13 = 1, and Eqs. (3.1) when v = 
Z are reduced to recurrence relations between the functions u.(x, t) and c.(x, t) 

(i)~ - V~2x )un_2 + ( n -  2){Un_lEt + ~ ' ~  (U~Un-m +'~CmCn-,n)--(n-- I)vunE~ -- 

-w~axu._, - Vaxt~xu~_,) } +a~ ½E (-.~ . . . .  , +w.c._._,)= 0 

-v~x)c~_ 2 +(n-2){c._s~ , +e.~E u .c ._ .  - (,9, 2 
m 

Assuming n = 0 we obtain 

V 
uo = - v e x ,  % = q ' ~ ¢ x ,  q - + !  (3.2) 

The  general solution of  the system of partial differential equations requires a sufficient number  of  arbitrary 
functions (four here), which can be found when the determinant  of  the coefficients of  the leading terms in the 
recurrent relations vanishes. Using the expressions for u0 and Co this determinant  can be converted to the form 

A=e~(n -2 )2 l  u° - ( n - l ) v ~ . ,  yc 0 I = v z e ~ ( n + i ) ( n - I ) ( n - 2 )  2 
I % u o - (n - I)ve., [ " 

When this vanishes we obtain "resonance"  - indices of  coefficient functions, which may turn out to be arbitrary. 
Using (3.2) the recurrent relations give, when n = 1 

e, - ve,~ + (ul - q~r~q  )e x = 0 (3.3) 

when n = 2 

/)tu0 =/~x (vOxu0 - uoul - YCoCl'), i~tco = Ox (vOxc0 - UoCl - coul ) (3.4) 

and when n = 3 

(~t + UlOx - V~2 )Ul + ~C2OxCl = -~x (uou2 + '~c0c2 - VExU2 ) - Etu2 - 
-Ex(UOU 3 +UlU 2 +YCoC 3 +YClC2 - Vi}xU 2 - 2 v E x u  3) 

(2 ,  - v 8  2 ) c  I + ~ ~ ( u l q  ) = - ~ x  (UoC2 + cou2 - VF.xC2 ) -  ~,c2 - 

- I ~  x (UOC 3 + u Ic2 + cOu 3 + ClU 2 - VOxC 2 - 2vexc 3) 

(3.5) 

In relation (3.3) one of the functions ul, cl remains undetermined. When n = 2, the two relations (3.4), by virtue of  
(3.2), are a consequentce of one another, and moreover are obtained by differentiation of  (3.3), so that at this step 
the functions u2 and c2 are not determined. Finally, the required number of  arbitrary functions arise necessary to satisfy 
the Kovalevskaya-Painlev6 test: one for any n = 1, two for n = 2 and one more for n = -1  (the latter is e(x, t)). 

It can be seen from the recurrent  relations that the series for the solutions can be terminated assuming un, 
cn = 0 when n > 1. The functions ul and Cl will then, according to (3.5), satisfy the initial system of equations and 
formally (3.2)--(3.5) give a B/icklund transformation, which enables some solutions to be used to construct the others 

U,.-., c,.- .  V 
u = " + u I = -V~ x In ~ + u I , c - ~ + c I = q'--'~-c3 x In e + c I 

£ I g  4V 

ct - v E ~  +(u I - q .~ r~c l ) e  x = 0 

(3.6) 
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If we begin with u I = C 1 = 0 ,  the solution for u and c turn out to be expressible in terms of the solutions of the 
heat-conduction equation. The form of the Biicklund transformation suggests the replacement v = u - q'4yc. For 
this variable it takes the form of the B~icklund transformation for the Burgers equation. 

The method employed above of converting to sum and difference variables remains useful when the 
dispersion of the medium is taken into account, identically for the velocity and impurity fields. For 
example, in the case of the system of equations 

b,u+uOxu-vbZ~u+~3u=-'tc3xc,  3 , c + b A u c ) -  vO:2 + ~xc3 = 0 

this method enables one to change to a pair of Korteweg--de Vries-Burgers equations 

~,s + S ~ x S -  v~2xs + ~ 3  s = O, ~tr  + r~x r -  v~2xr + ~ 3  r = 0 :~ 

which reduce to Korteweg--de Vries equations for zero viscosity. 
A similar decoupling of the equations is obtained for an arbitrary form of the linear dispersion, which 

is identical for the velocity and impurity concentration fields. 
This research was supported by the Russian Foundation for Basic Research (99-01-00435) and was 
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